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Abstract

Novel view synthesis (NVS) is a challenging task requir-
ing systems to generate photorealistic images of scenes from
new viewpoints, where both quality and speed are important
for applications. Previous image-based rendering (IBR)
methods are fast, but have poor quality when input views
are sparse. Recent Neural Radiance Fields (NeRF) and
generalizable variants give impressive results but are not
real-time. In our paper, we propose a generalizable NVS
method with sparse inputs, called FWD , which gives high-
quality synthesis in real-time. With explicit depth and dif-
ferentiable rendering, it achieves competitive results to the
SOTA methods with 130-1000× speedup and better percep-
tual quality. If available, we can seamlessly integrate sen-
sor depth during either training or inference to improve im-
age quality while retaining real-time speed. With the grow-
ing prevalence of depths sensors, we hope that methods
making use of depth will become increasingly useful.

1. Introduction
Given several posed images, novel view synthesis (NVS)

aims to generate photorealistic images depicting the scene
from unseen viewpoints. This long-standing task has appli-
cations in graphics, VR/AR, bringing life to still images. It
requires a deep visual understanding of geometry and se-
mantics, making it appealing to test visual understanding.

Early work on NVS focused on image-based render-
ing (IBR), where models generate target views from a set
of input images. Light field [39] or proxy geometry (like
mesh surfaces) [12, 24, 61, 62] are typically constructed
from posed inputs, and target views are synthesized by re-
sampling or blending warped inputs. Requiring dense in-
put images, these methods are limited by 3D reconstruction
quality, and can perform poorly with sparse input images.

Recently, Neural Radiance Fields (NeRF) [48] have be-
come the leading methods for NVS, using MLPs to repre-
sent the 5D radiance field of the scene implicitly. The color
and density of each sampling point are queried from the
network and aggregated by volumetric rendering to get the
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Figure 1. Real-time Novel View Synthesis. We present a real-
time and generalizable method to synthesize images from sparse
inputs. NeRF variants model the scene via an MLP, which is
queried millions of times during rendering and leads to low speeds.
Our method utilizes explicit depths and point cloud renderers for
fast rendering, inspired by SynSin [82]. The model is trained end-
to-end with a novel fusion transformer to give high-quality results,
where regressed depths and features are optimized for synthesis.

pixel color. With dense sampling points and differentiable
renderer, explicit geometry isn’t needed, and densities opti-
mized for synthesis quality are learned. Despite impressive
results, they are not generalizable, requiring MLP fitting for
each scene with dense inputs. Also, they are extremely slow
because of tremendous MLP query times for a single image.

Generalizable NeRF variants like PixelNeRF [89], IBR-
Net [78] and MVSNeRF [9] emerge very recently, synthe-
sizing novel views of unseen scenes without per-scene op-
timization by modeling an MLP conditioned on sparse in-
puts. However, they still query the MLP millions of times,
leading to slow speeds. Albeit the progress of accelerat-
ing NeRF with per-scene optimization [88, 27, 18], fast and
generalizable NeRF variants are still under-explored.

In this paper, we target a generalizable NVS method with
sparse inputs, refraining dense view collections. Both real-
time speed and high-quality synthesis are expected, allow-
ing interactive applications. Classical IBR methods are fast
but require dense input views for good results. General-
izable NeRF variants show excellent quality without per-
scene optimization but require intense computations, lead-
ing to slow speeds. Our method, termed FWD, achieves this



target by Forward Warping features based on Depths.
Our key insight is that explicitly representing the depth

of each input pixel allows us to apply forward warping to
each input view using a differentiable point cloud renderer.
This avoids the expensive volumetric sampling used in
NeRF-like methods, enabling real-time speed while main-
taining high image quality. This idea is deeply inspired by
the success of SynSin [82], which employs a differentiable
point cloud renderer for single image NVS. Our paper ex-
tends SynSin to multiple inputs settings and explores effec-
tive and efficient methods to fuse multi-view information.

Like prior NVS methods, our approach can be trained
with RGB data only, but it can be progressively enhanced if
noisy sensor depth data is available during training or infer-
ence. Depth sensors are becoming more prevalent in con-
sumer devices such as the iPhone 13 Pro and the LG G8
ThinQ, making RGB-D data more accessible than ever. For
this reason, we believe that methods making use of RGB-D
will become increasingly useful over time.

Our method estimates depths for each input view to build
a point cloud of latent features, then synthesizes novel views
via a point cloud renderer. To alleviate the inconsistencies
between observations from various viewpoints, we intro-
duce a view-dependent feature MLP into point clouds to
model view-dependent effects. We also propose a novel
Transformer-based fusion module to effectively combine
features from multiple inputs. A refinement module is em-
ployed to inpaint missing regions and further improve syn-
thesis quality. The whole model is trained end-to-end to
minimize photometric and perceptual losses, learning depth
and features optimized for synthesis quality.

Our design possesses several advantages compared with
existing methods. First, it gives both high-quality and high-
speed synthesis. Using explicit point clouds enables real-
time rendering. In the meanwhile, differentiable renderer
and end-to-end training empower high-quality synthesis re-
sults. Also, compared to NeRF-like methods, which cannot
synthesize whole images during training because of inten-
sive computations, our method could easily utilize percep-
tual loss and refinement module, which noticeably improves
the visual quality of synthesis. Moreover, our model can
seamlessly integrate sensor depths to further improve syn-
thesis quality. Experimental results support these analyses.

We evaluate our method on the ShapeNet and DTU
datasets, comparing it with representative NeRF-variants
and IBR methods. It outperforms existing methods, con-
sidering speed and quality jointly: compared to IBR meth-
ods we improve both speed and quality; compared to recent
NeRF-based methods we achieve competitive quality at re-
altime speeds (130-1000× speedup). A user study demon-
strates that our method gives the most perceptually pleas-
ing results among all methods. The code is available at
https://github.com/Caoang327/fwd_code.

2. Related Work
Novel view synthesis is a long-standing problem in com-

puter vision, allowing for the generation of novel views
given several scene images. A variety of 3D representations
(both implicit and explicit) have been used for NVS, includ-
ing depth and multi-plane images [74, 94, 72, 57, 7, 67],
voxels [69, 21], meshes [61, 23, 28, 62], point clouds
[82, 40, 64] and neural scene representations [65, 41, 19,
34, 47, 55, 48]. In this work, we use point clouds as our 3D
representations for computational and memory efficiency.
Image-based Rendering. IBR synthesizes novel views
from a set of reference images by weighted blending [15,
39, 20, 24, 57, 61, 12, 62]. They generally estimate proxy
geometry from dense captured images for synthesis. For in-
stance, Riegler et al. [61] uses multi-view stereo [66, 87, 77,
77, 45, 29] to produce scene mesh surface and warps source
view images to target views based on proxy geometry. De-
spite promising results in some cases, they are essentially
limited by the quality of 3D reconstructions, where dense
inputs (tens to hundreds) with large overlap and reasonable
baselines are necessary for decent results. These methods
estimate geometry as an intermediate task not directly opti-
mized for image quality. In contrast we input sparse views
and learn depth jointly to optimize for synthesis quality.
Neural Scene Representations. Recent work uses implicit
scene representations for view synthesis [65, 41, 19, 34, 47,
55]. Given many views, neural radiance fields (NeRF) show
impressive results [48, 92, 46, 56, 81], but require expensive
per-scene optimization. Recent methods [78, 89, 75, 9, 31]
generalize NeRF without per-scene optimization by learn-
ing a shared prior, with sparse inputs. However these meth-
ods require expensive ray sampling and therefore are very
slow. In contrast, we achieve significant speedups using ex-
plicit representations. Some concurrent work accelerates
NeRF by reformulating the computation [18], using pre-
computation [88, 27], or adding view dependence to explicit
3D representations [41, 83, 2, 8, 49]; unlike ours, these all
require dense input views and per-scene optimization.
Utilizing RGB-D in NVS. The growing availability of an-
notated depth maps [13, 5, 10, 1, 71, 68] facilitates depth
utilization in NVS [54, 40, 26], which serves as extra su-
pervision or input to networks. Our method utilizes explicit
depths as 3D representations, allowing using sensor depths
as additional inputs for better quality. Given the increasing
popularity of depth sensors, integrating sensor depths is a
promising direction for real-world applications.

Depth has been used in neural scene representations
for speedups [51, 73], spaser inputs [16] and dynamic
scenes[84]. However, these works still require per-scene
optimization. Utilizing RGB-D inputs to accelerate gener-
alizable NeRF like [89, 78] is still an open problem.
Differentiable Rendering and Refinement. We use ad-
vances in differentiable rendering [42, 35, 11, 52, 43] to
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Figure 2. System Overview. Given a sparse set of images, we construct a point cloud Pi for each image Ii using Feature Network f ,
View-Dependent Feature MLP ψ, and Depth Network d. Besides images, d takes MVS estimated depths or sensor depths as inputs and
regresses refined depths. Per-pixel features F ′

i are regressed by f and ψ based on images and relative view changes. A differentiable
point cloud renderer π is employed to project and render point clouds to target views. We use Transformer T to fuse rendered results from
arbitrary number inputs and apply refinement module R for final results. The model is trained with photometric loss and content loss.

learn 3D end-to-end. Learned geometries rely heavily on
rendering and refinement [90, 86, 3, 79] to quickly syn-
thesize realistic results. Refinement has improved dramat-
ically owing to generative modeling [38, 36, 91, 95] and
rendering frameworks [60, 32, 50, 30]. Instead of aggregat-
ing information across viewpoints before rendering [44], we
render viewpoints separately and fuse using a Transformer
[76, 17, 4], enabling attention across input views.

3. Method

Given a sparse set of input images {Ii}Ni=1 and corre-
sponding camera poses {Ri, Ti}, our goal is to synthesize a
novel view with camera pose {Rt, Tt} fast and effectively.
The depths {Dsen

i } of Ii captured from sensors are option-
ally available, which are generally incomplete and noisy.

The insight of our method is that using explicit depths
and forward warping enables real-time rendering speed and
tremendous accelerations. Meanwhile, to alleviate quality
degradations caused by inaccurate depth estimations, a dif-
ferentiable renderer and well-designed fusion & refinement
modules are employed, encouraging the model to learn ge-
ometry and features optimized for synthesis quality.

As illustrated in Figure 2, with estimated depths, input
view Ii is converted to a 3D point cloud Pi containing ge-
ometries and view-dependent semantics of the view. A dif-
ferentiable neural point cloud renderer π is used to project
point clouds to target viewpoints. Rather than directly ag-
gregating point clouds across views before rendering, we
propose a Transformer-based module T fusing rendered re-

sults at target view. Finally, a refinement module R is em-
ployed to generate final outputs. The whole model is trained
end-to-end with photometric and perceptual loss.

3.1. Point Cloud Construction

We use point clouds to represent scenes due to their effi-
ciency, compact memory usage, and scalability to complex
scenes. For input view Ii, point cloud Pi is constructed by
estimating depth Di and feature vectors F ′

i for each pixel
in the input image, then projecting the feature vectors into
3D space using known camera intrinsics. The depth Di is
estimated by a depth network d; features F ′

i are computed
by a spatial feature encoder f and view-dependent MLP ψ.
Spatial Feature Encoder f . Scene semantics of input view
Ii are mapped to per-pixel feature vectors Fi by spatial fea-
ture encoder f . Each feature vector in Fi is 61-dimensions
and is concatenated with RGB channels, which is 64 dimen-
sions in total. f is built on BigGAN architecture [3].
Depth Network d. Estimating depth from a single image
has scaling/shifting ambiguity, losing valuable multi-view
cues and leading to inconsistent estimations across views.
Applying multi-view stereo algorithms (MVS) [66, 87, 77,
85] solely on sparse inputs is challenging because of limited
overlap and huge baselines between input views, leading to
inaccurate and low-confidence estimations. Therefore, we
employ a hybrid design cascading a U-Net after the MVS
module. The U-Net takes image Ii and estimated depths
from the MVS module as inputs, refining depths with multi-
view stereo cues and image cues. PatchmatchNet [77] is



utilized as the MVS module, which is fast and lightweight.
Depth Estimation with sensor depths. As stated, U-Net
receives an initial depth estimation from the MVS module
and outputs a refined depth used to build the point cloud.
If sensor depth Dsen

i is available, it is directly input to the
U-Net as the initial depth estimations. In this setting, U-Net
servers as completion and refinement module taking Dsen

i

and Ii as inputs, since Dsen
i is usually noisy and incom-

plete. During training, loss Ls is employed to encourage
the U-Net output to match the sensor depth.

Ls = ∥Mi ⊙Di −Mi ⊙Dsen
i ∥ (1)

where Mi is a binary mask indicating valid sensor depths.
View-Dependent Feature MLP ψ. The appearance of the
point could vary across views because of lighting and view
direction, causing inconsistency between multiple views.
Therefore, we propose to insert view direction changes into
scene semantics to model this view-dependent effects. An
MLP ψ is designed to compute view-dependent features F ′

i

by taking Fi and relative view changes ∆v from input to
target view as inputs. For each point in the cloud, ∆v is
calculated based on normalized view directions vi and vt,
from the point to camera centers of input view i and target
view t. The relative view direction change is calculated as:

∆v = [(vi − vt)/∥vi − vt∥, vi · vt], vi, vt ∈ R3. (2)

and the view-dependent feature F ′
i is:

F ′
i = ψ(Fi, δ(∆v)) (3)

where δ is a two-layer MLP mapping ∆v to a 32-
dimensions vector and ψ is also a two-layer MLP.

3.2. Point Cloud Renderer

To observe the constructed point cloud Pi at target views,
we employ a neural point cloud renderer π. Pi is first trans-
formed to target view coordinates based on camera poses
and then rendered by π. The rendered feature maps F̃i share
the same dimension as feature F ′

i at each pixel. With ex-
plicit geometry transformation, our rendered results are ge-
ometrically consistent and correct across views.

We use the differentiable renderer design of [82], which
splats 3D points to the image plane and gets pixel values
by blending point features. The blending weights are com-
puted based on z-buffer depths and distances between pixel
and point centers. It is implemented using Pytorch3D [60].

This fully differentiable renderer allows our model to be
trained end-to-end, where photometric and perceptual loss
gradients can be propagated to points’ position and features.
In this way, the model learns to estimate depths and features
optimized for synthesis quality, leading to superior quality.
We show the effectiveness of it in experiments.
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Figure 3. Fusion Transformer. We use a lightweight transformer
T to fuse the features from N input views on each pixel. We use a
learnable token to query the fusion results.

3.3. Fusion and Refinement

Unlike SynSin [82] using a single image for NVS, fusing
multi-view inputs is required in our method. A naı̈ve fusion
transforms each point cloud to target view and aggregates
them into a large one for rendering. Despite high efficiency,
it is vulnerable to inaccurate depths since points with wrong
depths may occlude points from other views, leading to de-
graded results. Methods like PointNet [58] may be feasible
to apply on the aggregated point cloud for refinement, but
they are not efficient with significant point numbers.

Instead, we render each point cloud individually at tar-
get viewpoints and fuse rendered results by a fusion Trans-
former T . A refinement moduleR is used to inpaint missing
regions, decode feature maps and improve synthesis quality.
Fusion Transformer T . Given an arbitrary number of ren-
dered feature maps {F̃i}, fusion should be effective, fast,
and permutation invariant. Inspired by the success of Trans-
formers, we propose a pixel-wise Transformer T for fusion,
detailed in Figure 3. At each pixel, T inputs rendered fea-
ture vectors and queries fused results using a learnable “to-
ken”. Applied on features, T utilizes semantics for fusion.

Rendered results may lose geometry cues for fusion
when rendered from 3D to 2D. For instance, depths may re-
veal occlusion relationships across views, and relative view
changes from input to target views relate to each input’s
importance for fusion. Therefore, we also explored to use
geometry features as position encoding while not helpful.
Refinement Module R. Built with 8 ResNet [22] blocks,
R decodes fused feature maps F̃ to RGB images Ĩ at target
views. It inpaints regions invisible for inputs in a seman-
tically and geometrically meaningful manner. Also, it cor-
rects local errors caused by inaccurate depths and improves
perceptual quality based on semantics contained by feature
maps, leading to coherent and high-quality synthesis.

3.4. Training and Implementation Details

Our model is trained end-to-end with photometric Ll2

and perceptual Lc losses between generated and ground-
truth target images. The whole loss function is:

L = λl2Ll2 + λcLc (4)



Table 1. Model variants settings. We predefine three model
variants with different settings. FWD utilizes a pre-trained MVS
module, in which way it gets access to depths during training.

Name Test
Depth

Train
Depth

Depth Network MVS Module Losses

FWD-U MVS + U-Net Random ini. Ll2 + Lc

FWD ✓ MVS + U-Net Pre-trained Ll2 + Lc

FWD-D ✓ ✓ RGB-D + U-Net - Ll2 +Lc+Ls

where λl2 = 5.0, λc = 1.0. The model is trained end-
to-end on 4 2080Ti GPUs for 3 days, using Adam [37] with
learning rate 10−4 and β1=0.9, β2=0.999. When sensors
depths are available as inputs, Ls is used with λs = 5.0.

4. Experiments
The goal of our paper is real-time and generalizable

novel view synthesis with sparse inputs, which can option-
ally use sensor depths. To this end, our experiments aim
to identify the speed and quality at which our method can
synthesize novel images and explore the advantage of ex-
plicit depths. We evaluate our methods on ShapeNet [6] and
DTU [33] datasets, comparing results with the SOTA meth-
ods and alternative approaches. Experiments take place
with held-out test scenes and no per-scene optimization. We
conduct ablations to validate the effectiveness of designs.
Metrics. We conduct A/B test to measure the visual qual-
ity, in which workers select the image most similar to the
ground truth from competing methods. Automatic image
quality metrics including PSNR, SSIM [80] and LPIPS [93]
are also reported, and we find LPIPS best reflects the image
quality as perceived by humans. Frames per second (FPS)
during rendering is measured on the same platform (single
2080Ti GPU with 4 CPU cores). All evaluations are con-
ducted using the same protocol (same inputs and outputs).
Model Variants. Three models are evaluated with various
accessibility to depths for training and test, as defined in Ta-
ble 1. FWD utilizes a pretrained PatchmatchNet [77] as the
MVS module for depth estimations, which is also updated
during end-to-end training with photometric and perceptual
loss. FWD-U learns depth estimations in an Unsupervised
manner, sharing the same model and settings as FWD while
PatchmatchNet is randomly initialized without any pretrain-
ing. FWD-D takes sensor depths as additional inputs during
both training and inference. It doesn’t use any MVS mod-
ule since sensor depths provide abundant geometry cues.
For pretraining PatchmatchNet, we train it following typi-
cal MVS settings and using the same data splitting as NVS.

4.1. ShapeNet Benchmarks

We first evaluate our model for category-agnostic syn-
thesis task on ShapeNet [6]. Following the setting of [89],
we train and evaluate a single model on 13 ShapeNet [6]
categories. Each instance contains 24 fixed views of 64 ×
64 resolution. During training, one random view is selected

Input PixelNeRF FWD-U GT

Figure 4. Qualitative results of category-agnostic NVS on
ShapeNet. We test the capacity of our model by training it across
13 categories of ShapeNet with single view input, and compare
with PixelNeRF [89]. No gt depths are available during inference
and training. Our results have better visual quality and details.

Table 2. Category-agnostic NVS on ShapeNet. Quantitative
results for category-agnostic view-synthesis are presented.

1-view 2-view
model PSNR SSIM LPIPS FPS PSNR SSIM LPIPS FPS

DVR [53] 22.70 0.860 0.130 1.5 - - - -
SRN [70] 23.28 0.849 0.139 24 - - - -
PixelNeRF 26.80 0.910 0.108 1.2 28.88 0.936 0.076 1.1
FWD-U 26.66 0.911 0.055 364 28.43 0.931 0.043 336

as input and the rests are served as target views. For testing,
we synthesize all the other views from a fixed informative
view. The model is finetuned with two random input views
for 2-view experiments. We find that U-Net is sufficient for
good results on this dataset without the MVS module.

Qualitative comparisons to PixelNeRF are shown in Fig-
ure 4, where FWD-U gets noticeably superior results. Our
synthesized results are more realistic and closely matching
to target views, while PixelNeRF’s results tend to be blurry.
We observe the same trend in the DTU benchmark and eval-
uate the visual quality quantitatively there.

We show quantitative results in Table 2, adding SRN [70]
and DVR [53] as other baselines. Our method outperforms
others significantly for LPIPS, indicating a much better per-
ceptual quality, as corroborated by qualitative results. Pixel-
NeRF has a slightly better PSNR while its results are blurry.
Most importantly, FWD-U runs at a speed of over 300 FPS,
which is 300× faster than PixelNeRF.

4.2. DTU MVS Benchmarks

We also evaluate our model on DTU MVS dataset [33],
which is a real scene dataset consisting of 103 scenes. Each
scene contains one or multiple objects placed on a table,
while images and incomplete depths are collected by the
camera and structured light scanner mounted on an indus-
trial robot arm. Corresponding camera poses are provided.
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Figure 5. View synthesis results from FWD. We show the view synthesis results with 3 input views on DTU dataset from FWD-D (row.
1), FWD (row. 2) and FWD-U (row. 3). Our methods synthesize high-quality and geometrically correct novel views in real time.

As stated in [89], this dataset is challenging since it
consists of complex real scenes without apparent seman-
tic similarities across scenes. Also, images are taken under
varying lighting conditions with distinct color inconsisten-
cies between views. Moreover, with only under 100 scenes
available for training, it is prone to overfitting in training.

We follow the same training and evaluation pipelines as
PixelNeRF [89] for all methods to give a fair comparison.
The data consists of 88 training and 15 test scenes, between
which there are no shared or highly similar scenes. Images
are down-sampled to a resolution of 300 × 400. For train-
ing, three input views are randomly sampled, with the rest
as target views. For inference, we choose three fixed infor-
mative input views and synthesize other views of the scene.
Baselines. We evaluate a set of representatives of general-
izable NeRF and IBR methods in two different scenarios:
with RGB or RGB-D available as inputs during inference.

PixelNeRF [89], IBRNet [78] and MVSNeRF [9] are the
SOTA generalizable NeRF variants, taking RGB as inputs.
We use the official PixelNeRF model trained on DTU MVS
and carefully retrain IBRNet and MVSNeRF with the same
3-input-view settings. PixelNeRF-DS is also included as re-
ported in [16], which is PixelNeRF supervised with depths.
Please note that our settings are very different from evalua-
tions used in original papers of IBRNet and MVSNeRF.

A series of IBR methods are also evaluated. Since
COLMAP [66] fails to give reasonable outputs with sparse
input images, methods using COLMAP like FVS [61],
DeepBlending [25] cannot estimate scene geometry in this
setting. For these methods, we use depths captured by sen-
sors as estimated depths, which should give upper-bound
performance of these methods. To better cope with missing
regions, we add our refinement model to DeepBlending [25]
and retrain it on DTU dataset, termed Blending-R.

For fairness, we evaluate all methods using the same
protocol, distinct from some of their original settings. Al-
though we try our best to adopt these methods, our reported
results may still not perfectly reflect their true capacity.
Qualitative Results. Synthesis results are shown in Fig-

ure 5, where high-quality and geometrically correct novel
views are synthesized in real-time (over 35 FPS) under sig-
nificant viewpoint changes. Our refinement module faith-
fully inpaints invisible regions; also, synthesized images
have good shadows, light reflections, and varying appear-
ances across views, showing the efficacy of view-dependent
MLP. With sensor depths, results can be further improved.

We show comparisons to baselines in Figure 6. Our
methods provide noticeably better results than baselines
across different depth settings. For models without depths
in test, IBRNet and PixelNeRF give blurry results in areas
of high detail such as the buildings in the top row, while our
FWD-U and FWD give more realistic and sharper images.
With sensor depths in test, baseline Blending-R produces
more cogent outputs, but still struggles to distinguish ob-
jects from the background, such as in the middle row, while
FWD-D gives faithfully synthesis and clear boundaries.
Quantitative Results. We evaluate synthesis quality quan-
titatively by user study following a standard A/B paradigm.
Workers choose the closest to a ground truth image between
competing methods, and are monitored using a qualifier and
sentinel examples. All views in the test set (690 in total) are
evaluated, and each view is judged by three workers.

In Figure 7, user study results support qualitative obser-
vations. Among all baselines with and without test depths ,
users choose our method as more closely matching ground
truth images than others most of the time. FWD-U is se-
lected over PixelNeRF in 65.6% of examples, and 77.8%
compared to IBRNet. Also, over 90% workers prefer FWD-
D to FWD , showing advantage of using sensor depths.

We show automated view synthesis metrics and speeds in
Table 3. Across all depth availability settings, our method
is competitive with the SOTA baselines while significantly
faster. FWD-D runs in real-time and gives substantially
better image quality than others. FWD has competitive
metrics to PixelNeRF-DS while 1000× faster. Notably,
NeRF variants such as PixelNeRF, IBRNet, MVSNeRF, and
PixelNeRF-DS are at least two orders of magnitude slower.

The exception to highly competitive performance is
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Figure 6. Qualitative Comparison. We compare synthesis results from different methods with 3 input views (one of them shown in
figure). Our methods give geometrically consistent and visually appealing results, while other results suffering shaking artifacts at some
views. Unlike other methods, FWD-D and Blending+R get access sensor depths as inputs during inference.

Figure 7. User study on DTU. We conduct a user study by ask-
ing subjects to select the results most similar to the ground truth.
The numbers indicate the percentage of preference. Methods are
grouped based whether using depths during test. We also report
FWD vs. FWD-D showing the advantages of sensor depths.

weaker PSNR and SSIM of our unsupervised FWD-U
against PixelNeRF and IBRNet. However, FWD-U has no-
ticeably better perceptual quality with the best LPIPS, and
human raters prefer it to other methods in A/B tests. The vi-
sual quality in figure 6 also illustrates the disparity between
comparisons using PSNR and LPIPS. Meanwhile, FWD-
U is above 1000× faster than PixelNeRF and above 100×
faster than IBRNet. Depth estimations, rendering and CNN
would introduce tiny pixel shiftings, which harm the PSNR
of our method. NeRF-like methods are trained to optimize
L2 loss for each pixel independently, leading to blur results.

Among all methods without test depths, FWD has the
best results. Although it uses a pretrained MVS module,
we think this comparison is still reasonable since pretrained
depth module is easy to get. Also, training depths can be
easily calculated from training images since they are dense.

Baseline comparisons also show that IBR methods are
fast, but do not give images that are competitive with our
method. Our method outperforms them in both percep-
tual quality and standard metrics, showing the efficacy of
proposed methods. Note that Blending+R doesn’t sup-
port variable number inputs and our refinement module im-
proves its results significantly. We also compare FWD-U
with SynSin [82] which only receives a single input image,
showing the benefits of using multi-view inputs in NVS.

Table 3. Quantitative comparison on DTU real images.
We compare our method with representatives of generalizable
NeRF variants and IBR methods for image quality and render-
ing speed. Our method achieves significantly better speed-quality
tradeoff, indicating the effectiveness and efficiency of our design.
† Unlike other methods, SynSin receives only one image as input.

Test Train Model PSNR↑ SSIM↑ LPIPS↓ FPS↑

RGB RGB

PixelNeRF [89] 19.24 0.687 0.399 0.03
IBRNet [78] 18.86 0.695 0.387 0.27
MVSNeRF [9] 17.13 0.611 0.444 0.34
SynSin [82] † 15.66 0.564 0.388 51.8
FWD-U 17.42 0.598 0.341 35.4

RGB RGB-D PixelNeRF-DS [16] 19.87 0.710 0.370 0.03
FWD 20.15 0.721 0.259 35.4

RGB-D RGB-D
Blending-R [25] 16.98 0.661 0.351 41.8
FVS [61] 15.92 0.733 0.267 9.70
FWD-D 21.98 0.791 0.208 43.2

4.3. Ablations and Analysis

We evaluate the effectiveness of our designs and study
depth in more detail through ablation experiments.
Effects of Fusion Transformer. We design a model with-
out Transformer, which concatenates point clouds across
views into a bigger one for later rendering and refinement.
Its results in FWD-U settings are shown in Figure 8. The
ablated version is vulnerable to inaccurate depths learned in
unsupervised manner and synthesizes “ghost objects” since
points with bad depths occlude other views’ points.

We repeat the same ablation in FWD-D settings, shown
in Table 4, which settings give much better depth estima-
tions with sensor depths. The ablated model has notably
worse results for all metrics, indicating that the proposed
method is not only powerful to tackle inaccurate depth esti-
mations, but also fuse semantic features effectively.
Effects of View Dependent MLP. For ablation, we remove
the view-dependent feature MLP and report its results in
Table 4. Removing this module reduces model’s ability to
produce view-dependent appearances, leading to worse per-



Input View FWD-U w/o Transformer Target View
Figure 8. Ablation on Fusion Transformer. We show results for
FWD-U with and without Transformed-based fusion.

Table 4. Ablation Studies. We show the effectiveness of
Transformer Fusion and View-dependent MLP by ablation study
on FWD-D. These designs improve synthesize quality noticeably
while maintaining real-time rendering speed.

Model PSNR SSIM LPIPS FPS

Full model 21.98 0.791 0.208 43.2
w/o Transformer 20.95 0.748 0.241 48.4
w/o View dependence 21.16 0.769 0.212 44.0

formance for all metrics. We show more results in Supp.
Depth Analysis and Ablations. We visualize depths in
Figure 9. Estimating depths from sparse inputs is chal-
lenging and gives less accurate results because of the
huge baselines between inputs. We show estimated depths
from PatchmatchNet here, filtered based on the confidence
scores. Therefore, refinement is essential in our design to
propagate multi-view geometry cues to the whole image.
Our end-to-end model learns it by synthesis losses.

We ablate the depth network in Table 5 and report depth
error δ3cm, which is the percentage of estimated depths
within 3 cm of sensor depths. MVS module is critical (row
2) to give geometrically consistent depths. U-Net further
refines depths and improves the synthesis quality (row 3).
PatchmatchNet has its own shallow refinement layer, al-
ready giving decent refinements. Learning unsupervised
MVS and NVS jointly from scratch is challenging (row
4), and training depth network without supervision [14] first
may give a good initialization for further jointly training.

5. Conclusion

We propose a real-time and generalizable method for
NVS with sparse inputs by using explicit depths. This
method inherits the core idea of SynSin while extending
it to multi-view input settings, which is more challenging.
Our experiments show that estimating depths can give im-
pressive results with a real-time speed, outperforming exist-
ing methods. Moreover, the proposed method could utilize
sensor depths seamlessly and improve synthesis quality sig-
nificantly. With the increasing availability of mobile depth
sensors, we believe our method has exciting real-world 3D
applications. We acknowledge there could be the potential

input image sensor depths FWD-D filtered MVS FWD FWD-U

Figure 9. Depth visualizations. We visualize the normalized
inverse depths involved in our method. Sensor depths are incom-
plete because of hardware limitations and MVS estimated depths
are inaccurate, where many predictions have low confidence. This
demonstrates the necessity of depth completion and refinement.

Table 5. Depths network ablation and error. We ablate depth
network and compute δ3cm as error, which is the percentage of
predicted depths within 3 cm of sensor depths.

Test Train Model PSNR SSIM LPIPS δ3cm

RGB RGB-D FWD 20.15 0.721 0.259 79.07
RGB RGB-D -w/o MVS 16.69 0.594 0.357 61.62
RGB RGB-D -w/o U-Net 19.10 0.702 0.285 73.62
RGB RGB FWD-U 17.42 0.598 0.341 54.27

for the technology to be used for negative purposes by ne-
farious actors, like synthesizing fake images for cheating.

There are also challenges and limitations yet to be ex-
plored. 1) Although using explicit depths gives tremendous
speedups, it potentially inflicts depth reliance on our model.
We designed a hybrid depth regressor to improve the quality
of depth by combining MVS and single image depth estima-
tions. We also employed an effective fusion and refinement
module to reduce the degrades caused by inaccurate depths.
Despite these designs, the depth estimator may still work
poorly in some challenging settings (like very wide cam-
era baselines), and it would influence the synthesis results.
Exploring other depth estimation methods like MiDaS [59]
could be an interesting direction for future work.

2) The potential capacity of our method is not fully ex-
plored. Like SynSin [82], our model (depth/feature network
and refinement module especially) is suitable and beneficial
from large-scale training data, while the DTU MVS dataset
is not big enough and easy to overfit during training. Evalu-
ating our method on large-scale datasets like Hypersim [63]
would potentially reveal more advantages of our model,
which dataset is very challenging for NeRF-like methods.

3) Although our method gives more visually appealing
results, our PSNR and SSIM are lower than NeRF-like
methods. We hypothesize that our refinement module is not
perfectly trained to decode RGB colors from feature vec-
tors because of limited training data. Also, tiny misalign-
ments caused during the rendering process may also harm
the PSNR, although it is not perceptually visible.
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